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Abstract—High-resolution thermal infrared (TIR) remote
sensing has a wide range of applications. In this paper, we describe
the different applications and requirements identified in a litera-
ture review and during a consultation meeting with researcher ex-
perts in different fields. As a result, more than 30 applications were
identified within three different fields: 1) land and solid Earth;
2) health and hazards; and 3) security and surveillance. A com-
plete set of requirements (spatial, temporal, and radiometric reso-
lution, algorithms used, and supporting data, among others) for
each application is also provided. The results presented in this
paper provide useful information to enhance the importance of
high-resolution TIR data for civil applications and may serve as
a reference document for future TIR mission concepts.

Index Terms—Fuegosat, high resolution, land surface emissiv-
ity, land surface temperature, thermal infrared.

I. CONTEXT: FSS

THE Fuegosat Consolidation Element is part of the Earth
Watch Programme approved by the European Space

Agency (ESA) Council at the ministerial level in November
2001. The work plan for Fuegosat Consolidation Phase in-
cluded two steps: the first step proposed to establish a mission
architecture comprising nondedicated low Earth orbit (LEO)
and geostationary Earth orbit (GEO) operational elements and
dedicated infrared sensors, and the second step focused on the
definition of an infrared element framework. Risk management
related to natural hazards, including fire risk management, was
recognized as highly relevant to the Global Monitoring for
Environment and Security (GMES), which is now known as
Copernicus. It was therefore proposed to implement an infrared
element in the form of passenger payloads on all suitable
Sentinel spacecraft. The target application was risk man-
agement related to natural hazards with a special focus on
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fire risk management. Sentinel infrared element accommo-
dation studies were performed up to the preliminary con-
cept review level. However, a reassessment of the mission
requirements confirmed weaknesses in the traceability back to
GMES/Copernicus operational service definitions, which was
due to the nature of the original proposal. In particular, the
fire monitoring capabilities could not be traced back to fast
track or core service definitions. In parallel, the scope of high-
resolution thermal infrared (TIR) observations was increased to
include applications beyond fire monitoring as these were seen
as relevant to Copernicus. Based on these findings, a program
reorientation was defined, which included service definition,
identification of new applications, user requirement consolida-
tion, system definition, and associated technology activities.

In this framework, the Fuegosat Synthesis Study (FSS)
project contributed to the identification of applications for high-
resolution TIR remote sensing and the analysis of user require-
ments in three different topics: 1) land and solid Earth; 2) health
and hazards; and 3) security and surveillance. The FSS project
also included the matching of user requirements with derived
concepts to identify and outline a set of potential mission
scenarios and corresponding requirements. In this paper, we
focus on the applications identified during the literature review
and the requirements associated with each application.

II. METHODOLOGY

A. Literature Review

The methodology employed to identify the different applica-
tions and to extract the user requirements is based mainly on
available project reports and particularly on papers published
in international journals or proceedings presented at interna-
tional symposia, i.e., these results were mainly obtained from
a literature review. However, this approach was not adopted
for the “security and surveillance”-related applications since
these types of applications are not commonly published and
divulged, and the literature review did not provide useful in-
formation; therefore, most of the applications and requirements
were extracted from personal communications with military
institutions. Note that only civilian “security and surveillance”-
related applications were included in this paper.

B. Consolidation Review and Workshop

Applications and requirements identified during the liter-
ature review were consolidated after a consultation meeting
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with different international experts (identified researchers from
different organizations). In this meeting, the different applica-
tions identified during the literature review were prioritized.
The primary conclusion was that a spaceborne high-resolution
TIR sensor(s) was required to address the different identified
applications.

C. Prioritization of Applications

Performing a tradeoff consolidation analysis, one of the main
emerging elements was that any future space mission based on
TIR observations cannot concurrently and effectively satisfy all
the requirements originating from the rather different applica-
tions. Therefore, it was considered that some applications may
not be further considered, and for others, a priority ranking
should be provided. For this purpose, three indexes were consi-
dered, and the sum of the three indexes was used as an indicatorof
application importance: 1) technological readiness index (TRI);
2) requirement sharing index (RSI); and 2) TIR user need index
(TNI). Values of 1, 2, or 3 were assigned to each index.

The TRI refers to the operational maturity of the application
and mainly takes into account the technical feasibility of the
required spatial resolution, revisit time, and spectral configu-
ration. Applications requiring moderate/low spatial resolutions
and revisit times, and low spectral configurations (only 1 or
2 TIR bands) were considered with a high degree of technol-
ogy readiness (TRI = 3), whereas applications requiring high
spectral–temporal–spatial data (e.g., multi-/hyperspectral TIR
sensors with daily revisit time and spatial resolutions of few me-
ters) were considered with a low degree of readiness (TRI = 1).

The second parameter index, i.e., RSI, takes into account
the possibility of generalizing the requirements of a given
application, i.e., how much the specific requirements of that
application can be shared with other applications. The more its
requirements are shared by other applications, the higher the
RSI. For example, if an application requires the same number
of bands, spatial and temporal resolution and geographic cover-
age as others RSI = 3 was assigned. Likewise, RSI = 2 was
assigned for a medium concordance level, and RSI = 1 was
assigned when requirements sharing was low.

The third and final element in the priority definition, i.e., the
TNI, characterizes the significance/impact of the TIR measure-
ments for the considered application. In this case, the question
was: What is the added value of having TIR measurements
available for that application (as well as other bands)? If
TIR was considered crucial for that application, then it would
receive a high ranking. Hence, applications that could not
be addressed without TIR bands were considered TNI = 3,
whereas applications that could be addressed using other spec-
tral ranges than TIR were considered TNI = 1. Applications
not completely requiring TIR bands but where TIR could
provide complementary information were ranked as TNI = 2.

Finally, the sum (S) of the three indexes was used to define
the following priority levels (low, medium, and high).

S < 4, Priority level: Low
4 ≤ S ≤ 6, Priority level: Medium
S > 6, Priority level: High

D. Requirements Tables

The applications and requirements identified during the study
were summarized in form of tables, which list the major
elements to be addressed in the user requirements review.
These elements include: 1) application and source; 2) EO Level
2/3 product; 3) spatial resolution; 4) geographical coverage;
5) temporal resolution; 6) accuracy; 7) algorithms; 8) TIR
spectral resolution; 9) other spectral ranges; and 10) supporting
data. Despite the significance of these elements are clear for the
remote sensing community, some of them require a clarification
in the context of this paper.

The item “EO Level 2/3 product” refers to the main prod-
uct(s) required to address the given application. The catego-
rization of the processing levels may include some ambiguity
depending on the criteria used to define the levels. For example,
some differences can arise in the definition of levels in NASA
and ESA products. The Committee on Earth Observation Satel-
lites also provides a product-level definition, which is also
partly based on NASA’s definition. To avoid confusion, we
preferred to use more general terms such as “geophysical vari-
ables” or even to provide the name of the particular geophysical
variable, instead of providing the data level.

The item “spatial resolution” includes the optimal spatial
resolution required to address a given application. It should be
noted that requirements are provided for future missions. This
implies that, in most cases, applications can be performed with
more relaxed spatial resolutions, but users expect a better spatial
resolution in the future.

In the case of the “TIR spectral resolution,” we provide the
required bands in the TIR range between 8 and 14 μm. For
some applications (e.g., detection of hot temperature events)
other spectral ranges such as the mid infrared (MIR, 3–5 μm)
are preferable. However, since we focus on a TIR mission, we
always provide in this item bands located in the range 8–14 μm.
MIR bands are provided in the item “other spectral ranges,”
even if MIR bands are more important than the TIR bands.

III. APPLICATIONS AND REQUIREMENTS

Here, the applications identified during this study, as well
as the basic requirements, are presented. Applications were
divided into three topics: 1) land and solid Earth; 2) health
and hazards; and 3) security and surveillance. However, it was
found that some applications could be included in more than
one topic heading. Tables I–III present the user requirements
for each application and topic, which are briefly discussed in
the succeeding sections. It should be noted that describing the
scientific background of the different applications is beyond the
scope of this paper. However, literature references are given
for each application, and some basic details are included in the
requirements tables.

A. Land and Solid Earth

Applications included in the “land and solid earth” topic
were volcano and fire monitoring, which are based on the detec-
tion of high-temperature events (HTE), and evapotranspiration
(ET) retrieval and water stress detection, which relate to water
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TABLE I
SUMMARY OF USER REQUIREMENTS FOR LAND AND SOLID EARTH APPLICATIONS
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TABLE I
(Continued.) SUMMARY OF USER REQUIREMENTS FOR LAND AND SOLID EARTH APPLICATIONS

TABLE II
SUMMARY OF USER REQUIREMENTS FOR HEALTH AND HAZARDS APPLICATIONS
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TABLE III
SUMMARY OF USER REQUIREMENTS FOR SECURITY AND SURVEILLANCE APPLICATIONS

management issues. Other secondary applications included the
role of TIR data in earthquake events, detection of coal mine
fires, and growing degree days. Requirements for all these
applications are summarized in Table I.

1) Volcano Monitoring: Volcanic eruptions pose serious
hazards to sensitive ecosystems, transportation, and communi-
cation networks and to populated regions. Knowing the min-
eralogy of a rock or alluvial surface is critically important to
geologists trying to interpret the geologic, climatic, or volcanic
history of the surface. Spectroscopy and remote sensing in the
TIR region has lagged behind that of other wavelength regions
for numerous reasons. However, the utility of TIR remote
sensing for geology and mineralogy has become clear in the
past decades and numerous air- and space-based instruments
(in LEO and GEO) have become available. Volcano monitoring,
particularly during the eruption phase, requires a high temporal
resolution, and typically, volcanologists use GEO-based data
sacrificing spatial resolution for temporal resolution. Another
feature of volcano monitoring is that by, its very nature, the
location of the volcano is known, which for spaceborne system
definition is important.

2) Fire Monitoring: Fires are a major security hazard in
numerous countries around the world and affect urban and
rural areas alike. Here, the term “fire” will be dedicated to
any wild fire occurring in the natural environment, including
farmland fires [7]. Wildland fire is any nonstructural fire. This
is different to a controlled fire, which can be set on purpose
by professionals on vegetated areas such as forests, savannahs,
or Mediterranean vegetation. In Europe, the Southern coun-
tries (Portugal, Spain, France, Italy, and Greece) are the most
affected by fires, with an average of almost 50 000 fires between
1980 and 2008, corresponding to an average annual burnt area
of more than 480 000 hectares [27]. The total cost of fires
can be estimated at around 1% of the global gross domestic

product [60], including the costs of direct and indirect fire
losses, the cost of fire-fighting organizations, the cost of fire
insurance administration and the cost of fire protection for
buildings.

Fires are typically characterized by parameters such as emis-
sion plume extent, temperature, and fire radiative power. Most
in situ daytime fire sightings result from the observation of
smoke generated by fuel combustion, whereas most nighttime
sightings result from high and unusual luminosity of the burn-
ing areas. The high temperature of the burning areas makes the
fires detectable from space under clear-sky conditions.

3) Water Management: Detection of water stress and ET
retrieval are key applications for water management purposes.
Thermal infrared remote sensing has been recognized for a long
time as one of the most feasible means to detect and evaluate
water stress and to quantify ET over large areas in a spatially
distributed manner.

Water stress is considered to be a major environmental factor
limiting plant productivity worldwide. Water stress develops in
plants when evaporative losses cannot be sustained by extract-
ing water from the soil by the roots.

ET describes the loss of water from the Earth’s surface to
the atmosphere by the combined processes of evaporation from
surface and transpiration from vegetation. ET depends on the
presence of water and is regulated by the availability of energy,
which is needed to convert liquid water to water vapor and to
transport vapor from the land surface to the atmosphere. Physi-
ological regulations also occur in plants through mechanisms
controlling water extraction by the roots, water transport in
plant tissue, and water release to the atmosphere via the stomata
at the leaf surface (in direct relation with the mechanisms of
CO2 assimilation and photosynthesis).

4) Other Applications: Other applications using TIR re-
motely sensed data were also identified within the “land and
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solid Earth” topic. Examples include earthquake monitoring,
coal mine fire monitoring, and growing degree days. However,
during the consolidation process of the study, these applications
were considered medium to low priority compared with the
other applications stated earlier. This does not mean, however,
that these applications are not important, but within the scope of
this review and its focus on high resolution, these applications
were not considered to be main drivers.

B. Health and Hazards

The last two decades have witnessed an increasing use of re-
mote sensing for understanding the geophysical phenomena un-
derlying natural hazards. The scientific knowledge gained along
with the ability to disseminate timely geospatial information
together with demographic and socioeconomic data contributes
to comprehensive risk mitigation planning and improved dis-
aster response. Observations from Earth-orbiting satellites are
complementary to local and regional airborne observations and
to traditional in situ field measurements and ground-based sen-
sor networks. The contributions of satellite remote sensing to
Earth science, ranging from high-resolution topography (using
e.g., interferometric SAR, lidar, and digital photogrammetry)
and geodesy to passive multispectral thermal sensors, such
as ASTER or MODIS and active microwave imaging, have
transformed the discipline. This transformation has resulted in
a rapidly growing field of applied research that is increasingly
able to provide geospatial information products fulfilling the
operational needs of multihazard decision support tools and
systems. Policy makers and emergency managers/responders
from many levels, e.g., international, federal, state, regional
and local jurisdictions, use these tools and systems to generate
scenarios, devise mitigation plans, and implement effective
response measures.

In this topic, two major applications are considered: the
urban heat island (UHI) effect and epidemiology. Other ap-
plications such as industrial risks, coastal inundations, and
asbestos–cement detection are also identified and presented.
Requirements for all these applications are provided in Table II.
Note that fire risk could be also considered a “health and
hazard” application, but it was included in the “land and solid
Earth” applications.

1) UHI: Thermal remote sensing has been used over urban
areas to assess UHI effects, to perform land cover classifica-
tions, and as input for models of urban surface atmosphere
exchange. The main surface parameter to be extracted from
thermal remote sensing is the so-called land surface tempera-
ture (LST) or simply surface temperature, which is of primary
importance to the study of urban climatology. LST modulates
the air temperature of the lowest layers of the urban atmosphere,
and it is central to the understanding of the energy balance
of the surface. LST helps to determine the internal climates
of buildings and is fundamental to energy exchanges, which
affect the comfort and well being of city dwellers. Surface and
atmospheric modifications due to urbanization generally lead to
a modified thermal climate that is warmer than the surrounding
nonurbanized areas, particularly at night. This phenomenon is
known as the UHI. UHIs have long been studied by ground-

based observations taken from fixed thermometer networks or
by traverses with thermometers mounted on vehicles. With
the advent of thermal remote sensing technology, remote ob-
servation of UHIs became possible from satellite and aircraft
platforms and has provided new avenues for studying their
causes through the combination of thermal remote sensing and
urban micrometeorology [59]. Since thermal remote sensors
observe the spatial patterns of thermal radiance at the surface,
the term surface UHI (SUHI) is usually employed to distinguish
between UHI (when air temperature is considered) and SUHI
(when LST is considered). For this field, most information was
extracted from an UHI project funded by ESA under the DUE
program (http://www.urbanheatisland.info).

2) Epidemiology: There is a growing international con-
sciousness about the importance of the epidemiology of dis-
eases. It is recognized that improved up-to-date information
about the environment where infectious diseases occur will
help epidemiologists to study, understand, and predict threats to
human health and hazards. Spaceborne Earth observation opens
up new opportunities to predict and help combat epidemic out-
breaks, as well as to join the search for the origin of pathogens.
In fact, several diseases can be analyzed using factors that have
been determined through remote sensing data; a detailed list of
them was studied by Beck et al. [3] and referenced therein.

Remote sensing data creates an important opportunity to
evaluate risk areas and determine the spatial distribution of
some epidemic or vector outbreaks, which affect human health.
In fact, since the 1970s, remote sensing improvements have
contributed to health science. Some free or low-cost envi-
ronmental and meteorological data sets (e.g., low-resolution
images) have been used to assess epidemic risks at global,
regional, and local levels. Therefore, remote sensing data can
provide valuable information for determining risk factors and
mapping risk areas; these can then be integrated into models,
which are based on ecological analyses [25].

3) Other Applications: Other operational contexts in the
framework of “health and hazards” applications can benefit
from TIR remote sensing. Among them, industrial risks, coastal
inundation, and the detection of asbestos–cement were con-
sidered. However, these applications were considered as lower
priority within the context of this paper.

C. Security and Surveillance

Applications and user requirements for security-and-
surveillance-related issues are currently only vaguely defined
within the public forum. This is obviously because this domain
is closely linked with military and politically sensitive appli-
cations. In addition, these applications require primarily very
high spatial resolution TIR data, and less emphasis is given
to spectral configurations or algorithms to extract geophysical
quantities. Operational TIR systems at very high resolution are
rarely accessible to the scientific community, and therefore,
the available knowledge in the scientific community is limited.
This fact implies that a review of peer-reviewed literature (as
considered for “solid Earth” and “health and hazards” appli-
cations) is limited at best, and this was reflected in the list of
applications and user requirements (only limited information
could be obtained from international journals).
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TABLE IV
SUMMARY OF TIR REMOTE SENSING APPLICATIONS AFTER THE CONSOLIDATION REVIEW. A PRIORITY LEVEL (HIGH, MEDIUM, LOW)

HAS BEEN ASSIGNED TO EACH APPLICATION USING THE INDICES (TR, RS, TIR) PRESENTED IN SECTION II-C

Most of the openly available information includes applica-
tions using handheld thermal cameras or unmanned aerial ve-
hicles, with spatial resolutions on the order of centimeters. One
sensor identified was the Multispectral Thermal Imager (MTI)
sensor, developed at Los Alamos National Laboratory (Sandia
National Laboratory). This sensor has a spatial resolution of 5 m
in the visible bands and 20 m in the thermal bands. MTI is an
American quasi-military reconnaissance sensor on a spacecraft
launched in March 2000. The program was cosponsored by the
American Department of Energy, Office of Nonproliferation
and National Security. The 587-kg spacecraft carried visible
and infrared sensors in 15 spectral bands to spot cooling ponds
adjacent to nuclear reactors and dust content associated with
uranium ore processing [51]. The collected data also has spin-
off benefits for civilian research involving atmospheric ozone
measurement, water vapor content, etc.

The Copernicus initiative (www.copernicus.eu) also includes
some preoperational security services. G-MOSAIC (http://
www.gmes-gmosaic.eu) and LIMES (http://www.fp6-limes.eu)
are two examples. These already completed projects combined
Earth observation technologies with communication and posi-
tioning technologies, addressing different domains, such as
maritime surveillance, infrastructure surveillance, providing
support to peace-keeping, etc. However, the applications found
within these projects relied on high-resolution visible and near-
infrared (VNIR) imagery (e.g., IKONOS, QUICKBIRD) and
SAR data: No user needs related to high-resolution TIR data

were identified. This is likely because no TIR sensor with high
resolution and revisit time is currently available.

Different applications were suggested by the military orga-
nizations consulted by the study team, and from these meet-
ings, basic user needs were identified. As stated earlier, since
information was provided through personal communication,
a strong justification of the identified user needs cannot be
provided in some cases. It should be noted that the Interna-
tional Society for Optics and Photonics (SPIE) organizes the
Security+Defence conferences and publish the proceedings of
these conferences. Despite this valuable information for the
“security and surveillance” topic, the study team had no access
to this documentation, and it was not consulted during this
study. The main user requirements came from the European
Union Satellite Centre, which supports the decision-making of
the Common European Security and Defence Policy. Identified
user needs for “security and surveillance” applications are
provided in Table III.

IV. CONCLUSION

The review performed in the framework of the FSS identified
several high-resolution thermal remote sensing applications
and requirements spanning three different topics: land and
solid Earth, health and hazards, and security and surveillance.
Results presented were extracted from literature, although in
the case of the “security and surveillance” topic information
from personal communication was also incorporated. Main
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applications in the land and solid Earth topic including volcano
and fire monitoring, as well as detection of water stress and
retrieval of ET for water management purposes, lead to the
identification of about 20 applications. In the case of the health
and hazards topic, the main applications identified were UHIs
and epidemiology, leading to the identification of more than ten
different applications. Applications related to the security and
surveillance topic was based on limited information found in
the literature, and only a few applications were identified. After
the consolidation review, some applications were discarded,
and requirements were iterated. A priority level was also as-
signed to each application. The final list of applications and
associated priority levels compiled within the context of this
review is presented in Table IV.

There is a clear perception that a high-resolution TIR mis-
sion with a near daily revisit would have significant con-
sensus among the various user communities since existing
high-resolution TIR sensors (e.g., Landsat/TM-ETM-TIRS,
Terra/ASTER) do not meet most of the user requirements.
This finding is also reflected by recent and past studies and
proposals such as MicroSatellite for Thermal InfraRed Ground
Surface Imaging (MISTIGRI) and the Thermal Infrared Ex-
plorer (TIREX). MISTIGRI is a Centre National D’Études
Spatiales (CNES) microsatellite project carrying a TIR sensor
suite in cooperation with Spain. TIREX was a proposal pre-
sented in 2010 to the ESA’s call for Earth Explorer Opportu-
nity Missions, which was finally deselected for Phase A. The
originality of MISTRIGRI and TIREX was to combine a high
spatial resolution (∼50 m) with high revisit capabilities of one
or two days over selected sites. Another related initiative is
the NASA Jet Propulsion Laboratory Hyperspectral Infrared
Imager (HyspIRI) mission (https://hyspiri.jpl.nasa.gov/).

In summary, a number of high-resolution TIR applications
(∼40) were analyzed and technical requirements for a po-
tential TIR sensor were identified. The results presented in
this paper can serve as a reference for the design of a future
high-resolution TIR sensor, which would bridge the currently
existing gap between high spatial and temporal resolution
TIR data.

ACKNOWLEDGMENT

The authors would like to thank the different participants
in the “Workshop on Fuegosat Requirements Consolidation”
for the valuable discussion and suggestions to improve the
table requirements, as well as the other team members who
contributed to the literature review of applications.

REFERENCES

[1] B. Barret et al., “Global carbon monoxide vertical distributions from
spaceborne high-resolution FTIR nadir measurements,” Atmos. Chem.
Phys., vol. 5, no. 11, pp. 2901–2914, Nov. 2005.

[2] C. Bassani et al., “Deterioration status of asbestos-cement roofing sheets
assessed by analyzing hyperspectral data,” Remote Sens. Environ.,
vol. 109, no. 3, pp. 361–378, Aug. 2007.

[3] L. R. Beck, M. L. Bradley, and B. L. Wood, “Remote sensing and human
health: New sensor and new opportunities,” Emerging Infect. Diseases,
vol. 6, no. 3, pp. 217–225, May/Jun. 2000.

[4] L. Billa, S. Mansor, A. R. Mahmud, and A. H. Ghazali, “Modelling
rainfall intensity from NOAA AVHRR data for operational flood fore-
casting in Malaysia,” Int. J. Remote Sens., vol. 27, no. 23, pp. 5225–5234,
Dec. 2006.

[5] R. Blair, B. Blair-Fitzharris, and K. Richards, “Interpolation of growing
degree-days in non-homogeneous terrain,” in Proc. 14th Annu. Colloq.
Spatial Inf. Res. Centre Univ. Otago, Dunedin, New Zealand, 2002,
pp. 1–10.

[6] K. W. Bowman et al., “Tropospheric emission spectrometer: Retrieval
method and error analysis,” IEEE Trans. Geosci. Remote Sens., vol. 44,
no. 5, pp. 1297–1307, May 2006.

[7] CEOS, “The use of Earth observing satellites for hazard support: Assess-
ments and scenarios,” Nat. Ocean. Atmos. Admin./Nat. Environ. Satell.,
Data Inf. Service, Silver Spring, MD, USA, Final Rep. CEOS DMSG,
Nov., 2003.

[8] N. Chrysoulakis, “Thermal detection of plumes produced by industrial
accidents in urban areas based on the presence of the heat island,” Int. J.
Remote Sens., vol. 23, no. 14, pp. 2909–2916, Jan. 2002.

[9] N. Chrysoulakis and C. Cartalis, “A new algorithm for detection of plumes
caused by industrial accidents, based on NOAA/AVHRR imagery,” Int. J.
Remote Sens., vol. 24, no. 17, pp. 3353–3367, Jan. 2003.

[10] N. Chrysoulakis, N. Adaktylou, and C. Cartalis, “Detecting and monitor-
ing plumes caused by major industrial accidents with JPLUME, a new
software tool for low-resolution image analysis,” Environ. Model. Softw.,
vol. 20, no. 12, pp. 1486–1494, Dec. 2005.

[11] S. Corradini, S. Pugnaghi, S. Teggi, M. F. Buongiorno, and M. P. Bogliolo,
“Will ASTER see the Etna SO2 plume?” Int. J. Remote Sens., vol. 24,
no. 6, pp. 1207–1218, Jan. 2003.

[12] B. Duchemin, J. Goubier, and G. Courrier, “Monitoring phenological key
stages and cycle duration of temperate deciduous forest ecosystems with
NOAA/AVHRR data,” Remote Sens. Environ., vol. 67, no. 1, pp. 68–82,
Jan. 1999.

[13] M. Emch et al., “Local environmental predictors of cholera in Bangladesh
and Vietnam,” Amer. J. Tropical Med. Hygiene, vol. 78, no. 5,
pp. 823–832, May 2008.

[14] H. N. Feidas, C. Cartalis, and A. P. Cracknell, “Use of Meteosat imagery
to define clouds linked with floods in Greece,” Int. J. Remote Sens.,
vol. 21, no. 5, pp. 1047–1072, Jan. 2000.

[15] J. B. Fisher, K. Tu, and D. D. Baldocchi, “Global estimates of the land-
atmosphere water flux based on monthly AVHRR and ISLSCP-II data,
validated at 16 FLUXNET sites,” Remote Sens. Environ., vol. 112, no. 3,
pp. 901–919, Mar. 2008.

[16] Y. Gao, J. F. Mas, B. H. P. Maathuis, X. Zhang, and P. M. Van Dijk,
“Comparison of pixel-based and object-oriented image classification
approaches—A case study in a coal fire area, Wuda, Inner Mongolia,
China,” Int. J. Remote Sens., vol. 27, no. 18, pp. 4039–4055, Sep. 2006.

[17] Y. Gao, N. Kerle, and J. F. Mas, “Object-based image analysis for coal
fire-related land cover mapping in coal mining areas,” Geocarto Int.,
vol. 24, no. 1, pp. 25–36, Feb. 2009.

[18] A. Gemperli, P. Vounatsou, D. Anderegg, and G. Pluschke, “EPIDEMIO:
Earth observation in epidemiology,” in Proc. Envisat ERS Symp.,
Salzburg, Austria, Sep. 6–10, 2004, pp. 91.1–91.7, ESA SP-572,
April 2005.

[19] L. Giglio, T. Loboda, D. P. Roy, B. Quayle, and C. O. Justice, “An active-
fire based burned area mapping algorithm for the MODIS sensor,” Remote
Sens. Environ., vol. 113, no. 2, pp. 408–420, Feb. 2009.

[20] A. I. Gil et al., “Ocurrence and distribution of Vibrio cholerae in
the coastal environment of Peru,” Environ. Microbiol., vol. 6, no. 7,
pp. 699–706, Jul. 2004.

[21] R. M. Green and S. I. Hay, “The potential of Pathfinder AVHRR data
for providing surrogate climatic variables across Africa and Europe for
epidemiological applications,” Remote Sens. Environ., vol. 79, no. 2/3,
pp. 166–175, Feb. 2002.

[22] A. J. L. Harris, W. I. Rose, and L. P. Flynn, “Temporal trends in lava
dome extrusion at Santiaguito 1922–2000,” Bull. Volcanol., vol. 65, no. 2,
pp. 77–89, Mar. 2003.

[23] Q. Hassan, C. P. A. Bourque, F. R. Meng, and W. Richards, “Spatial
mapping of growing degree days: An application of MODIS-based surface
temperatures and enhanced vegetation index,” J. Appl. Remote Sens.,
vol. 1, no. 1, Apr. 2007, Art. ID 013511.

[24] Q. Hassan, C. P. A. Bourque, and F. R. Meng, “Application of Landsat-
7 ETM+ and MODIS products in mapping seasonal accumulation of
growing degree days at an enhanced resolution,” J. Appl. Remote Sens.,
vol. 1, no. 1, Sep. 2007, Art. ID 013539.

[25] V. Herbreteau, G. Salem, M. Souris, J. P. Hugot, and J. P. Gonzalez,
“Thirty years of use and improvement of remote sensing, applied to
epidemiology: From early promises to lasting frustration,” Health Place,
vol. 13, no. 2, pp. 400–403, Jun. 2007.

[26] L. Jia et al., “Regional estimation of daily to annual regional evapotran-
spiration with MODIS data in the Yellow River Delta wetland,” Hydrol.
Earth Syst. Sci., vol. 13, no. 10, pp. 1775–1787, Oct. 2009.



SOBRINO et al.: APPLICATIONS AND REQUIREMENTS FOR FUTURE HIGH-RESOLUTION SENSORS 2971

[27] JRC, “Forest Fires in Europe 2008,” Eur. Commiss./Joint Res. Cen-
tre/Inst. Environ. Sustainability, Ispra, Italy, Rep. 9, 2008. [Online].
Available: http://forest.jrc.ec.europa.eu/media/cms_page_media/9/forest-
fires-in-europe-2008.pdf

[28] S. Kato and Y. Yamaguchi, “Estimation of storage heat flux in an urban
area using ASTER data,” Remote Sens. Environ., vol. 110, no. 1, pp. 1–17,
Sep. 2007.

[29] C. Kuenzer et al., “Detecting unknown coal fires: Synergy of automated
coal fire risk area delineation and improved thermal anomaly extraction,”
Int. J. Remote Sens., vol. 28, no. 20, pp. 4561–4585, Oct. 2007.

[30] V. Lakshmi and K. Schaaf, “Analysis of the 1993 midwestern flood using
satellite and ground data,” IEEE Trans. Geosci. Remote Sens., vol. 39,
no. 8, pp. 1736–1743, Aug. 2001.

[31] B. Lobitz et al., “Climate and infectious disease: Use of remote sensing ofr
detection of Vibrio cholerae by indirect measurement,” Proc. Nat. Acad.
Sci. USA, 97, no. 4, pp. 1438–1443, Feb. 2000.

[32] B. H. P. Maathuis and J. L. Van Genderen, “A review of satellite
and airborne sensors for remote sensing based detection of minefields
and landmines,” Int. J. Remote Sens., vol. 25, no. 23, pp. 5201–5245,
Dec. 2004.

[33] A. Marj, M. R. Mobasheri, M. J. Valadanzouje, Y. Rezaei, and
M. R. Abaei, “Using satellite images in determination of malaria
outbreaks potential region,” Environ. Hazard., vol. 8, no. 2 pp. 89–100,
2009.

[34] S. A. Mikkelsen and J. E. Olesen, “Computer-aided mapping of growing
degree days for Denmark, calculated from monthly temperature normals,”
Acta Agric. Scand., vol. 34, no. 3, pp. 330–338, Jan. 1984.

[35] C. A. Morales and E. N. Anagnostou, “Extending the capabilities of high-
frequency rainfall estimation from geostationary-based satellite infrared
via a network of long-range lightning observations,” J. Hydrometeorol.,
vol. 4, no. 2, pp. 141–159, Apr. 2003.

[36] C. Oppenheimer, “Volcanological applications of meteorological satel-
lites,” Int. J. Remote Sens., vol. 19, no. 15, pp. 2829–2864, Jan. 1998.

[37] M. Picchiani et al., “Volcanic ash detection and retrievals from MODIS
data by means of neural networks,” Atmos. Meas. Tech., vol. 4, no. 3,
pp. 2619–2631, May 2011.

[38] A. J. Prata, “Infrared radiative transfer calculations for volcanic
ash clouds,” Geophys. Res. Lett., vol. 16, no. 11, pp. 1293–1296,
Nov. 1989.

[39] S. Pugnaghi, G. Gangale, S. Corradini, and M. F. Buongiorno, “Mt. Etna
sulfur dioxide flux monitoring using ASTER-TIR data and atmospheric
observations,” J. Volcanol. Geotherm. Res., vol. 152, no. 1/2, pp. 74–90,
Apr. 2006.

[40] A. Rahman, F. Kogan, and L. Roytman, “Short report: Analysis of malaria
cases in Bangladesh with remote sensing data,” Amer. J. Tropical Med.
Hygiene, vol. 74, no. 1, pp. 17–19, Jan. 2006.

[41] V. J. Realmuto, M. J. Abrams, and M. F. Buongiorno, “The use of mul-
tispectral thermal infrared image data to estimate the sulfur dioxide flux
from volcanoes: A case study from mount Etna, Sicily, July 29, 1986,”
J. Geophys. Res., vol. 99, no. B1, pp. 481–488, Jan. 1994.

[42] D. A. Roshier and R. M. Rumbachs, “Broad-scale mapping of temporary
wetlands in arid Australia,” J. Arid Environ., vol. 56, no. 2, pp. 249–263,
Jan. 2004.

[43] J. M. Sanchez et al., “Monitoring daily evapotranspiration at a regional
scale from Landsat-TM and ETM+ data: Application to the Basilicata
region,” J. Hydrol., vol. 351, no. 1/2, pp. 58–70, Mar. 2008.

[44] A. K. Saraf and S. Choudhury, “Cover: NOAA-AVHRR detects ther-
mal anomaly associated with the 26 January 2001 Bhuj earthquake,
Gujarat, India,” Int. J. Remote Sens., vol. 26, no. 6, pp. 1065–1073,
Mar. 2005.

[45] G. Sepulcre-Cantó et al., “Detection of water stress in an olive orchard
with thermal remote sensing imagery,” Agric. Forest Meteorol., vol. 136,
no. 1/2, pp. 31–44, Jan. 2006.

[46] G. Sepulcre-Cantó et al., “Monitoring yield and fruit quality parameters
in open-canopy tree crops under water stress. Implications for ASTER,”
Remote Sens. Environ., vol. 107, no. 3, pp. 455–470, Apr. 2007.

[47] S. S. Shcherbak et al., “Multisensor satellite monitoring of seawater state
and oil pollution in the northeastern coastal zone of the Black Sea,” Int. J.
Remote Sens., vol. 29, no. 21, pp. 6331–6345, Nov. 2008.

[48] J. A. Sobrino, M. Gomez, J. C. Jimenez-Muñoz, A. Olioso, and
G. Chehbouni, “A simple algorithm to estimate evapotranspiration from
DAIS data: Application to the DAISEX campaigns,” J. Hydrol., vol. 315,
no. 1–4, pp. 117–125, Dec. 2005.

[49] J. A. Sobrino et al., “Thermal remote sensing in the framework of
the SEN2FLEX project: Field measurements, airborne data and ap-
plications,” Int. J. Remote Sens., vol. 29, no. 17/18, pp. 4961–4991,
Sep. 2008.

[50] M. Stathopoulou, C. Cartalis, and N. Chrysoulakis, “Using midday sur-
face temperature to estimate cooling degree-days from NOAA-AVHRR
thermal infrared data: An application for Athens, Greece,” Sol. Energy,
vol. 80, no. 4, pp. 414–422, Apr. 2006.

[51] J. J. Szymanski and P. G. Weber, “Multispectral thermal imager: Mission
and applications overview, IEEE Trans. Geosci. Remote Sens., 43, no. 9,
1943–1949, Sep. 2005.

[52] D. Tang, D. R. Kester, Z. Wang, J. Lian, and H. Kawamura, “AVHRR
satellite remote sensing and shipboard measurements of the thermal plume
from the Daya Bay, nuclear power station, China,” Remote Sens. Environ.,
vol. 84, no. 4, pp. 506–515, Apr. 2003.

[53] V. Tramutoli, V. Cuomo, C. Filizzola, N. Pergola, and C. Pietrapertosa,
“Assessing the potential of thermal infrared satellite surveys for moni-
toring seismically active areas. The case of Kocaeli (İzmit) earthquake,
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